HDS

Exercise 2.2: Mills Ratio

chapter 2

Let \(\phi(z) = \frac{1}{\sqrt{2 \pi}} e^{- z^2 / 2}\) be the density of the standard normal \(Z \sim \gauss (0, 1)\) variate.

(a)

The result follows from \(\phi' (z) = - z \phi(z)\).

(b)

Since \(\P (Z \geq z) = \int_z^\infty \phi (x) \, \sd x \overset{\text{(a)}}{=} - \int_z^\infty \frac{\phi'(x)}{x} \, \sd x\) the result can be obtained by repeated application of integration by parts: \begin{align} \P (Z \geq z) & = \left[ - \frac{\phi(x)}{x} \right]_z^\infty - \int_z^\infty \frac{\phi(x)}{x^2} \, \sd x \newline & = \frac{\phi(z)}{z} + \int_z^\infty \frac{\phi’(x)}{x^3} \, \sd x \newline & \overset{\text{(i)}}{=} \phi(z) \left(\frac{1}{z} - \frac{1}{z^3} \right) + 3 \int_z^\infty \frac{\phi(x)}{x^4} \, \sd x \newline & = \phi(z) \left(\frac{1}{z} - \frac{1}{z^3} \right) - 3 \left\lbrace \left[ \frac{\phi(x)}{x^5} \right]_z^\infty + 5 \int_z^\infty \frac{\phi(x)}{x^6} \, \sd x \right\rbrace \newline & \overset{\text{(ii)}}{=} \phi(z) \left(\frac{1}{z} - \frac{1}{z^3} + \frac{3}{z^5} \right) - 15 \int_z^\infty \frac{\phi(x)}{x^6} \, \sd x \, . \end{align} Since \(\phi \geq 0\), the lower bound follows from (i) and the upper bound from (ii).

Notes

Published on 25 July 2020.