Exercise 12.5: Kernels and Cauchy–Schwarz chapter 12 (a) If k is positive definite, then (1)det[k(x,x)k(x,y)k(y,x)k(y,y)]=k(x,x)k(y,y)−k2(x,y)≥0⟹k(x,y)≤k(x,x)k(y,y). (b) Set k(f,g)=⟨f,g⟩. We verify that k is positive definite: (2)∑i=1n∑j=1nαiαj⟨fi,fi⟩=⟨∑i=1nαifi,∑i=1nαifi⟩≥0. The result then follows from (a). « Exercise 12.4: Uniqueness of Kernel Exercise 12.6: Eigenfunctions for Linear Kernels » Published on 9 April 2021. Please enable JavaScript to view the comments powered by Disqus.