HDS

Exercise 12.5: Kernels and Cauchy–Schwarz

chapter 12

(a)

If k is positive definite, then (1)det[k(x,x)k(x,y)k(y,x)k(y,y)]=k(x,x)k(y,y)k2(x,y)0k(x,y)k(x,x)k(y,y).

(b)

Set k(f,g)=f,g. We verify that k is positive definite: (2)i=1nj=1nαiαjfi,fi=i=1nαifi,i=1nαifi0. The result then follows from (a).

Published on 9 April 2021.