HDS

On the Gilbert–Varshamov Bound

general

Various excercises in the book require an application of the Gilbert–Varshamov bound. In this post, we prove a lemma which will be useful for these excercises and which may be of independent interest. The below lemma is a simplified version of Lemma 4(a) by Raskutti, Wainright, and Yu (2012).

Lemma. Let $d \in \N$ and let $s \in \N$ be even. Let $M$ be the $s/2$-packing number of $G = \{ u \in [N]^d : \norm{u}_0 = s\}$ for some $N \in \N$ with respect to the Hamming distance $\rho\ss{H}$. Then \begin{equation} \log M \ge \frac{s}{64} \log \frac{N d}{s} \end{equation} if $N \ge 2$ and $s \le N d / 25$. In particular, if $N = 3$, then \begin{equation} \log M \ge \frac{s}{64} \log \frac{e d}{s} \end{equation} if $s \le d / 8$.

Proof. The cardinality of a $s/2$-Hamming ball centred around some $u \in G$ is at most $\binom{d}{s/2} N^{s/2}$: fix $d - s/2$ out of $d$ coordinates and arbitrarily vary the other $s/2$ coordinates. Therefore, if $M \binom{d}{s/2} N^{s/2} < |G| = \binom{d}{s} (N - 1)^s$, then we can find a $v \in G$ which is at Hamming distance $s/2$ from all elements in the packing; and we can keep doing this until $M \binom{d}{s/2} N^{s/2} \ge \binom{d}{s} (N - 1)^s$: \begin{equation} M \ge \frac{\binom{d}{s}}{\binom{d}{s/2}} \frac{(N - 1)^{d}}{N^{s/2}} \overset{\text{(i)}}{\ge} \parens{\frac{d}{2es}}^{s/2} N^{s/2} \parens{\frac{N-1}N}^s \end{equation} where in (i) we use the bounds $(n/k)^k \le \binom{n}{k} \le (ne/k)^k$. Therefore, \begin{equation} \log M \ge \frac{s}{2} \log \frac{Nd}{s} \frac{((N- 1)/ N)^2}{2e} \overset{\text{(i)}}{\ge} \frac{s}{2} \log \frac{Nd}{s}\frac{1}{8e} \overset{\text{(ii)}}{\ge} \frac{s}{64} \log \frac{Nd}{s} \end{equation} where (i) follows if $N \ge 2$ and (ii) follows if $Nd/s \ge 25$. \(\blacksquare\)

As an example, consider the set \begin{equation} \mathbb{T}^d(s) = \{ \theta \in \R^d : \norm{\theta}_0 = s, \, \norm{\theta}_2 \le 1\}. \end{equation} Consider the collection of vectors $\set{-1/\sqrt{s},0,1/\sqrt{s}}$. The above lemma then gives that there are $M$ vectors in this collection with exactly $s$ non-zero elements and which all differ at at least $s/2$ positions. In other words, for every two distinct vectors $u$ and $v$ in this collection, \begin{equation} \norm{u - v}_2 \ge \sqrt{\frac{s}{2}}\frac{1}{\sqrt{s}} \ge \frac12. \end{equation} Therefore, \begin{equation} \log M(\tfrac12, \mathbb{T}^d(s), \norm{\vardot}_2) \ge \frac{s}{64} \log \frac{e d}{s} \end{equation} if $s \le d / 8$. See also Exercise 5.8(a).

Published on 9 September 2021.